skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frisbie, C_Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The widespread utilization of metamaterials, despite their immense transformative potential, faces challenges regarding scalability in mass production. To address these limitations, an additive method that leverages liquid inks and selective wetting to produce scalable and cost‐effective metamaterials is presented. UV‐based imprinting lithography is utilized to fabricate surface energy‐modulated patterns, enabling precise solution patterning. This approach, unlike conventional UV‐based imprinting lithography, not only accurately produces the negative replica of the stamp topography during UV‐induced crosslinking but also transfers a hydrophobic layer onto the raised surfaces of the imprinted hydrophilic layer, resulting in 3D shapes with spatially modulated surface energy. In the second process step, a functional ink is dragged over the patterned substrate where it dewets to fill the hydrophilic recesses. This innovative process enables high‐speed metamaterial production, with ink deposition speeds up to 12 m min−1. The method accommodates a wide range of inks, including metals, dielectrics, and semiconductors, providing meticulous control over vertical structures such as pattern thickness and hetero‐multilayer formation. Additionally, it offers flexibility in creating metamaterials on free‐standing ultra‐thin sheets, introducing desirable attributes like foldability and disposability. The effectiveness of this approach is validated through the fabrication and characterization of metallic metamaterials. 
    more » « less
  2. Abstract The relationship between hole density and conductivity in electrochemically gated polythiophene films is examined. The films are  integrated into electrolyte‐gated transistors (EGTs), so that hole accumulations can be electrochemically modulated up to ≈0.4 holes per thiophene ring (hpr). Polythiophenes include poly(3‐alkylthiophenes) (P3ATs) with four different side chain lengths – butyl (P3BT), hexyl (P3HT), octyl (P3OT), or decyl (P3DT) – and poly[2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] (PBTTT) and poly(3,3′′′‐didodecyl[2,2′:5′,2′′:5′′,2′′′‐quaterthiophene]‐5,5′′′‐diyl) (PQT). Analysis of the drain current – gate voltage (ID–VG) and gate current – gate voltage (IG–VG) characteristics of the EGTs reveals that all six polythiophene semiconductors exhibited reversible conductivity peaks at 0.12 – 0.15 hpr. Conductivity is suppressed beyond ≈0.4 hpr.The maximum carrier mobilities of the P3AT semiconductors increase, and hysteresis of the conductivity peaks decreases, with increasing alkyl side‐chain length. PBTTT and PQT with reduced side chain densities exhibit the largest hysteresis but have higher hole mobilities. The results suggest that at ≈0.4 hpr, a polaronic sub‐band is filled in all cases. Filling of the sub‐band correlates with a collapse in the hole mobility. The side‐chain dependence of the peak conductivity and hysteresis further suggests that Coulombic ion‐carrier interactions are important in these systems. Tailoring ion‐carrier correlations is likely important for further improvements in transport properties of electrochemically doped polythiophenes. 
    more » « less